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On the basis of the machine experiments, we analyze the various conditions used to 
select the order of approximation to the solutions of inverse heat-conduction prob- 
lems by iterative regularization methods. 

The contemporary approach to the diagnostics and identification of unsteady heat-exchange 
processes is based on the analysis of inverse problems. In the overwhelming majority of 
cases, the inverse heat-exchange problems are incorrectly posed or ill determined and regular- 
ization algorithms are necessary [I, 2]. As shown in [2, 3], effective solution algorithms 
of various types can be obtained with the help of iterative regularization. This method is 
based on gradient algorithms generating regularizing families of operators with the iteration 
number as a parameter. 

The iterative process of solving incorrectly posed inverse problems develops in two 
stages, called here the regular and nonregular stages. The regular stage is characterized 
by a monotonic approach of the approximation to the required solution of the problem. The 
basic features of the recovered function are successively refined in this stage. In the sec- 
ond stage, better approximations cannot be guaranteed, as undesirable oscillations usually 
develop gradually due primarily to errors in the initial data. 

Therefore, the main question in applying the iterative method is how to determine when 
to stop, i.e., how one determines the number of iterations which is approximately on the 
boundary dividing two stages discussed above. 

Currently, the most widely used criterion for stopping the iterative process is an error 
cutoff, where an error functional to be minimized reaches a value corresponding to the total 
errors in the experimental data [2, 4, 5]. Rigorous results on the stability conditions for 
the approximations in the gradient method using this approach can be found in [5, 6]. 

A successful application of the error cutoff criterion requires an a priori knowledge of 
the error in the initial data. But in practice this requirement is far from always fulfilled. 
Therefore, the problem of finding other methods of choosing an optimal level of approximation 
is of interest. 

We consider this question using an example of an iverse boundary-value problem involving 
heat conduction, although we assert that the method described below can also be used for other 
types of inverse problems. 

Let it be required to find functions q(T) and T(x, T) from the conditions 
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T (x, O) = O, OT (b, , )  = 0 ,  - -X OT (O, ,,) 
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where c = c(T), % = %(T), and f(T) are known functions. 

(3) 

This statement of the problem corresponds to two possible practical situations, when 
the actual process of heat transport in the body can be represented as a heating (or cooling) 
of an infinite plate or rod by a heat flux of unknown density q(T), uniformly distributed 
over the boundary x = 0 with the other boundaries of the body being thermally insulated. 
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As initial experimental information, the temperature at a certain point in the body x = xl 
is given. But the measurements have errors so that the function f(T) includes an (unknown) 

exact part f(T) and an error 6f(T): 

f (~) = y(~) + 6f (~). 
We first consider the solution of the direct heat-conduction problem with boundary con- 

ditions of the second kind, so that we assume that the function q(T) in (1) and (2) is given. 

The temperature field inside the body is computed by numerical methods based on a finite- 
difference approximation of the quasilinear differential problem (I), (2). Using a uniform 
grid and the implicit method of [7], we obtain a system on nonlinear algebraic equations to 
order O(AT + h2), which can be written in the form: 
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A~ 

@ ( T { -  T{- ')  I A~ = ~ [~{+o,~ (r~+, = T { ) -  V,_o, ~ ( r { -  T{_,)I, (4) 

6p ( G -  G -~) - Ax 

2 i h ~ %N--o,5(T~--TiN-- , ) '  

where 

- . T z  + T i % l  
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and s is the number of the current iteration, which is omitted in the basic equations of the 
difference solution of the direct problem. 

For the coefficients given above, the system of equations (4) is linear. The system 
is well determined and can be solved efficiently by iteration on the thermophysical char- 
acteristics. 

In the solution of the inverse problem, we use an iterative method of minimizing the 
func t ional 

Tm 

J = J' IT (x~, ~ ) - -  f (~)1~ &, 
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(5) 

based on the method of conjugate gradients [8]. The unknown function q(T) is represented 
as a piecewise-linear approximation which can be represented as an M-dimensional vector 

q ('0 ---- {q (%), q (%) . . . . .  q ('~M))- 

The iteration sequence is set up with the help of the method of conjugate gradients ac- 
cording to the formula 

qh+l = qk -- [3kP~- (6 )  

The gradient functional J'(q) is necessary to get the direction of the slope Pk and is cal- 
culated using a method based on Lagrange multipliers [9]. This method, as applied to the 
solution of inverse heat-conduction problems, has been considered in [10, 11]. In the non- 
linear case the use of this method leads to a conjugate problem described by the system of 
algebraic equations [11] : 
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where 
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J (T~ + "-z Ti+ I) and 0.5 T~ ), respectively. 

The system of equations (7) is linear in the conjugate variables g~ and is solved by 
iteration. The gradient functional with respect to the specific heat flux is calculated ac- 
cording to [I0] 

2 
J ' ( q ) =  h a{, ] = 0 ,  M] (8) 

There also exist other methods of determining the gradient functional [2, 12]. 

The calculation is performed sequentially. First the direct problem (4) and conjugate 
problem (7) are solved. Then the resulting values of the conjugate variables are used to cal- 
culate the gradient functional from (8), the values Bk and Pk are determined, then using (6) 
a new approximation qk+1 is found. In this way the accuracy of the solution of the direct 
problem is made consistent with the accuracy inherent in the chosen stepsize. 

The sequence of values (Jk}, resulting from the solution of the inverse problem by the 
iteration procedure described above, satisfies the relaxation relation 

s (q~+0 ~ s (q0, (9) 

We use the following cutoff criterion 

V-ff-~ - VA+I <~ 8. ( I  o )  

However, condition (10) can only apply when the stepsize in time is chosen such that 
the corresponding finite-dimensional form of the inverse problem is well determined [2]. Ob- 
viously this approximation to the computational model may not always be possible because the 
accuracy of the final solution may be lowered and it is often necessary to use smaller values 
of the stepsize AT. In this case, the nonregular stage of the iterative process usually de- 
velops for a number of iterations corresponding to condition (10). 

We consider two other methods of cutting off the iteration process and refer to them as 
cutoffs based on additional measurements and increase of the functional, respectively. 

Cutoff with Respect to Additional Measurement. For a given heat flux density q(T), at 
the points 0 ~ xl < b and 0 ~ x2 ~ b let there correspond exact (but unknown) temperatures 
TI(T) and T2(T), respectively. Instead of these temperatures, the real experimental values 
will always be approximations: 

T1 (~) = T1 (w) + 61 (w), T2 (w) = T 2 (w) + 62 (w). 

The disturbances ~z(T) and 62(T) are usually due to various random fluctuation processes. 
As a rule, TI(T) and T2(T) change in time much more slowly than the low-frequency components 
of the disturbances. 

We assume that the iteration solution of the inverse heat-conduction problem is set up 
using the temperature TI(T). As shown by the numerical experiments, an increase in the number 
of iterations initially leads to the successively refined recovery of the slowly varying struc- 
tural features of the required function q(T) corresponding to the curve TL(T). In this case 
T(qk(T), xl, T) calculated from the solution of the direct problem (I), (2) approximates TI(T). 
Then there gradually appears and develops additional higher-frequency vibrational components, 
due to the disturbance ~I(T) in the function TI(T). 

628 



Beginning with a certain iteration, the curves qk(T) deviate more and more from the 
required solution, adjusted for the perturbed value of the temperature. Therefore, the ap- 

T m 
Ar(X') .-If [T(%(*), xi, *)--Ti(*)]~dT} ~ calculated at point x 2 for the exact proximation error k = 

0 

temperature Ti(T), at first decreases with increasing k in the iteration process, but then 
goes through a minimum and starts to increase. Obviously the value qk,(T) corresponding to 
this minimum will be the best approximation to q(~). 

We assume that the random functions 61(T) and 62(T) are uncorrelated and introduce the 

error 
~m 

Ah(xi) = {~[T(qk(~), ~ ,  T ) - -  Ti(T)]~dT} ~ (11) 
0 

for the perturbed temperatures Ti(T) known from experiment. One expects that the minimum of 
this quantity will be at an iteration number near k*. Therefore, the first cutoff method will 
be based on the determination of an iteration number k for which hk(Xi) is a minimum: 

k:minAk(~). (12) 
h 

This method of iteration cutoff for inverse heat-conduction problems was discussed in [13]. 

Cutoff Condition with Respect to Increment of the Functional. As follows from the above 
discussion, in the solution of an incorrectly posed problem by iteration, fluctuations appear 
in the recovered function near the minimum of the functional J. These fluctuations come from 
the errors in the initial data T(xl, T). In order to determine the iteration number where 
these fluctuations appear, we studied the behavior of the functional J, the increment of the 
functional s = Jk+1 -- Jk, and also the quantity 

Ap =~fl(J~, hqh) - -1 /  AJn+l , (13) 

which represents the distance from the tangent at a point corresponding to the value qk on the 
hyperplane to the surface of the functional at the point qk+l = qk + hqk" For a convex func- 
tion hp ~ 0, and the equality only occurs at the extremum of the functional. 

We considered the recovery of various functions q(T) for the linear and nonlinear forms 
of (I), (2) using data perturbed with different error levels 6. The results of the calcula- 
tions are discussed below. 

The dependence /~k) is of the relaxation type. The nature of this curve is affected by 
the location xl of the temperature-sensitive element. For values of xl far from the heated 
surface (AFo < U.I), the curve ~-(k) has a sharp shelflike forms starting with an iteration 
number k* in a region near the value of the error 6 of the initial data. As the value of xl 
gets closer to the heated surface, a gradual transition from a shelflike dependence to a 
monotonic decrease occurs. We were not able to show the appearance of fluctuations in the 
solution with the help of the dependence ~k). Also a study of the behavior of the function 
~(k), which has a saw-toothed form, yielded nothing in this regard. 

The calculations showed that when the error is small [6 ~ 1% Tmax (xl)], a completely 
satisfactory q(T) is obtained using the cutoff condition (10). 

Encouraging results were obtained by comparing the behavior of W'~(k) and Ap(k). With 
increase in the number of iterations, the function s changes such that at first it de- 

* and then begins to oscillate usually with small amplitude. It creases to a certain value Ap 
is noted that when we use temperature data corresponding to a point xl for which the discreti- 
zation step s ~ 0.1, the iteration process can be stopped if the first minimum of s is 
reached for ~-(k) on the shelf. In this case the result has sufficient accuracy. 

If we use data at a point near the heated surface, (AFo > 0.1), where ~-(k) does not 
have a sharp shelf, then as shown from the numerical results, in many cases it is possible 

* which can during the planning stages of the experiment, to establish threshold value Ap, 
serve as a cutoff condition for the iteration process in the solution of an actual incor- 
rectly posed problem. In particular, for the mathematical model considered here, the thresh- 

* = 0.5 deg was taken. Usually if the minimization of the functional is continued old value s 
further, worse results are obtained. The calculations are also showed that in this case a 
fairly good recovery of q(T) is obtained using the cutoff condition (12). 
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Fig. I. Recovery of the heat flux 
density qIII (i0 ~ W/m 2) with respect 
to a temperature-sensitive element at 
position: a) xl = 0.0048 m; b) xl = 
0.0168 m; c) xz = 0.040 m; d) qII 

(10 ~ W/m 2) with respect to data from 
a temperature-sensitive element at 
xl = 0.040 m with the corresponding 
number of iterations k of the calcula- 
tion indicated: I) exact value of the 
recovered heat flux; 2) recovery for 
an exactly specified temperature, k = 
22; 3) recovery using perturbed data 
and the cutoff condition J~k ~ 6x I, (a) 
and (b) k = 6; (c) and (d) k = 4; 4) 
the same, but for the condition k: 
minA k (x 2 = 0.0032 m); (a) k = 8; (b) 
k = 10; (c) k = 19; (d) k = 6; 5) the 
same, but for the condition s ~ 0.5, 
(a) k = 8; (b) k = 7; (c) and (d) 
k = 5. 

For illustration of the results considered here of applying the conditions of selecting 
an iterative solution, we present data from a series of calculations, where various forms of 
q(~) were recovered. 

In the modeling of the thermal processes, boundary conditions of the second kind were 
specified in the form of the functions: 

q1(x) = Zl ( ] - -  M ) - 1  (14) 

q1~(x)=z2 1 - - c o s  ( M - -  1) ( j -  1) , (15)  

B - - ]  ~ 1 - -  cos ( ] - -  1 ) + 0 . 5  1 - - c o s  (M 1 ) - ( ] - -  I) . (16)  qm(~)  = z~ B------'~ (M - -  1) 

From the solution of the direct problem we determine the temperature dependence f(T) = 
T(xT, T) at a point with a given coordinate x~. We modeled the reading of the measuring 
apparatus by superimposing a perturbation on this dependence imitating the actual decoding 
and sensitivity errors of the temperature-sensitive elements. Thus, the initial dependence 
for the inverse heat-conduction problem was calculated according to the equation 

Tz(x)= T(xz, T ) +  - - - -~--+ 3 ' 
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Fig. 2. Temperature dependence T(xl, %) 

(~ used for the recovery of the heat 
flux density qIII according to data from 

temperature-sensitive elements at the 

points: a) Xl = 0.0048 m; b) 0.0168; c) 

0.040 m. Curve I is the exact dependence 

curve 2 is the perturbed temperature de- 

pendence. 

where 60 = 0.U45max (TJ(xT)) is the sensitivity error of the temperature-sensitive element 

(a constant), and 61 = 5; 12.5; 2U ~ is the oseillogram decoding error (a variable) ~11 and 
~2~ are random quantities, distributed normally with a dispersion D = I and an expected value 

M = 0. 

The following quantities were specified in the calculations: 

In the linear problem zl = 5,105 W/m 2" z2 = 2 5.10 s W/m2; b = 0.003 m; ~m = 20 sec 

= 0.1843.10 -e m2/sec. 

The coordinates of the temperature-sensitive elements were chosen such that the discre- 

tization step AT = 0.5 sec would satisfy the condition [2] 0.01 < hFo < 0.1 for all points 

0 < x~ ~ b. 

As initial data, we took the temperature dependence at the points xl = 0.003 m; 0.00144 

m; 0.00096 m, corresponding to the dimensionless discretization steps AFo = 0.0102, 0.0444, 

0.1. 

For the nonlinear problem we used z I = 2.91"106 W/m2; z2 = 0.833.106 W/m 2., b = 0.040 

m; m m = 40 sec; At = 2 sec; x I = 0.040 m; 0.0168 m; 0.0048 m. 

We considered an St25 plate with thermal diffusivity 0.886"10 -2 ~ ~ ~ 1.416"10 -2 m2/sec. 

The discretization steps in time and position of the temperature-sensitive element were chosen 

from the condition 0.01 < kFo < 1.3. Then the discretization steps corresponding to the posi- 

tions used were 0.0111 ~ AFo ~ 0.0177; 0.063 ~ s ~ 0.1; 0.762 ~ AFo ~ 1.229. 

The number of grid points in the coordinate x was chosen from the quantity AFo, accord- 

ing to [14]. 

The error criterion was calculated according to (11) in the method based on additional 
measurements. The solution was selected according to condition (12) with the use of data from 
a temperature-sensitive element at the following positions: in the linear case x2 = 2.76"10 -3 
m; 1.80-10 -3 m; 0.84"10 -3 m; in the nonlinear case x2 = 40"10 -3 m; 36-10 -3 m; 3.2-10 -3 m. 

As an illustration of the results, we show in Fig. I the recovery of the dependence (16) 

in the nonlinear case using data from a temperature-sensitive element at various positions x 
For comparison we show the curve corresponding to the number of iterations in which the error 

cutoff condition 

~-g~ ~6x ,  (17) 

f o r  the  t e m p e r a t u r e - s e n s i t i v e  e lement  i s  s a t i s f i e d .  In  F i g .  2 we show the  dependence  T ( x l ,  
m) used  f o r  the  r e c o v e r y  of  the  f u n c t i o n  (16) .  I t  shou ld  be n o t e d  t h a t  when t he  p o s i t i o n  of  
the measuring temperature-sensitive element is far enough away from the heated surface, the 
accuracy in the recovery of a complicated curve can be impaired significantly. In particular, 
such a situation is illustrated in Fig. Ic for xl = 0.040 m. For a simpler dependence, the 
required function can be recovered much more accurately with other cutoff conditions, as shown 

in Fig. Id. 
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Hence, the numerical experiments indicate that the above-discussed empirical methods of 
choosing approximate solutions of incorrectly posed inverse problems can be applied success- 
fully in practice. 

NOTATION 

T, temperature; y, specific density of the material; %(T), thermal conductivity; e(T), 
specific heat; a, thermal diffusivity; T, time; x, spatial coordinate; AT, grid stepsize in 
time; h, grid stepsize in position; AFo, dimensionless computational discretization step of 
the function q(T); b, thickness of the plate; Tm, time of the experiment; ~, number of the 
additional temperature-sensitive element; ~, error in specifying the initial information; 
xZ, distance between temperature-sensitive element ~ and the heated surface; k, iteration 
number for minimization of the functional; s, iteration number for parabolic minimization; 
j, M, current time index and number of time grid points; i, N, current coordinate index and 
number of grid points with respect to coordinate; B, slope stepsize; p, slope direction. 
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